近年のデータ活用やDX (デジタルトランスフォーメーション)の注目により、ビッグデータの分析を生業とするデータサイエンティストの需要はますます高まってきています。本記事では、データサイエンティストのフリーランス案件に関心がある方に向けてデータサイエンティストの基礎知識やフリーランス市場で求められるスキルなどについて解説します。
データサイエンティストとは
英語における「サイエンス」は科学や自然科学などを示しますが、「データサイエンス」はデータを用いて科学的に有益な知見を引き出そうとすることを意味します。つまり、データサイエンスではデータを扱う手法である情報科学、統計学、アルゴリズムなどを横断的に扱います。また、データサイエンティストとは比較的新しい職種であり、「DX (デジタルトランスフォーメーション)」や「ビッグデータ」といった言葉とともに注目を浴びている職種でもあります。 DXやデータ活用が注目される中で企業としては、データ活用の取り組み方やそれを行う人材の確保という問題にぶつかります。新しい職種でもあるためデータ活用を行える人材は豊富ではありません。そのため、データサイエンティストは転職市場やフリーランス市場において一定の需要があり、売り手市場のような状況です。データサイエンティストの仕事内容
データサイエンティストの目的は、データサイエンスを用いて事業戦略の立案や意思決定材料を生み出すことです。そのため、データサイエンティストの仕事内容は分析戦略の策定、分析データの準備、データ分析/可視化、モデルの構築など多岐に渡ります。データサイエンスのステップ
データサイエンスとは、統計、人工知能、データ分析など複数の分野を組み合わせることでデータから価値を生み出すことです。現代では、SNSやECサイトなどを経由して企業は多くの顧客データを所有しています。データベースにあるそれらのデータを解析して活用するのがデータサイエンスです。 データサイエンスは一般的に下記のような流れで進めていきます。- ビジネス課題の発見
- ビジネス課題を踏まえた仮説策定
- データ収集・加工
- データ解析・検証
- モデルの構築
- 運用
データサイエンスはビジネス課題を把握して、それに対する仮説を立案することからはじまります。そして、仮説を立証するために必要なデータをERPやデータベースから取得し、使える形に整えるためにデータ処理を施します。その後は、統計学などを用いてデータ解析を行います。このフェーズでは、TableauやPower BIなどのBIツールを使用する場合も多いです。そして、それらのデータをもとにモデル構築を行います。最終的には、それらの結果からビジネスの方針決定につなげるのがデータサイエンティストの役割です。
データサイエンティスト協会とは?
データサイエンティスト協会 とは、データサイエンティストに必要なスキルや知識を定義し、育成カリキュラムや評価制度の構築などを行っている組織です。データサイエンティストは新しい職種であるため、他のIT職種と比較しても育成制度が整っていません。そのため、データサイエンティスト協会が開講している講座で知識を付けていく方法も良いでしょう。データサイエンティストはなくなる?
データサイエンティストは新しい職種であるにも関わらず、その将来性が危惧されることも多い職業です。将来性が危惧される理由としては、AIの進歩によってデータサイエンスは人間がやらなくても実行できるということやデータサイエンティストの領域が曖昧なため、データアナリストやデータエンジニアという形で集約されてしまうことが挙げられます。 しかし、結論としてデータサイエンティストという職業がなくなる可能性は少ないでしょう。AIの発達によって人間が作業する部分は減っていく可能性はありますが、「どのようにデータサイエンスを用いて、何を解決していくのか」という根本の部分が領域であるデータサイエンティストはより重要視される可能性も高いです。また、データ活用の市場は拡大しており、データサイエンティストの育成もすぐにできることではありません。それらを考慮すると、現時点ではデータサイエンティストの売り手市場は継続することが見込まれるでしょう。フリーランスデータサイエンティストになるには今がチャンス!?
今後も、データサイエンティストの需要が保たれるということが予想されますが、フリーランス市場では懸念されることもあります。それは、スキルの低い人が案件を獲得できなくなる可能性です。 現時点では、売り手市場でもあるためデータアナリストのような経歴の方がより上流工程を領域とするデータサイエンティストに挑戦できる案件も見受けられます。しかし、データ分析や解析に強みを持つ人材が増えることで企業は即戦力として活躍できる人材の採用を強化することが予想できます。そのため、フリーランスへの転向を検討している場合は早めにフリーランスとしての実績を積んだ方がいいかもしれません。 お問い合わせはこちらキャリアや案件について相談だけでもOKデータサイエンティストの年収
FAworks における2021年のデータでは、データサイエンティストの平均年収は1,164万円で、最高年収は2,040万円、最低年収は660万円です。データサイエンティストの領域は曖昧な部分もあり、データ分析作業がメインの場合は月額単価が60万円前後の場合もあります。そのため、年収としては660万円〜2,040万円と幅広くなっています。データサイエンティストになるには
データサイエンティストになるためには、データアナリストから担当領域を広げる方法やSE (システムエンジニア)からキャリアチェンジする方法などさまざまです。また、最近では新卒をデータサイエンティストとして採用をする企業もあるため今後データサイエンティストになる方法は増えていくでしょう。 これからデータサイエンティストを目指す方はエージェントのキャリアコンサルタントに相談してみる方法もあります。具体的な働き方や勉強すべきスキルを知ることができます。データサイエンティストに必要なスキル
データサイエンティストになるにはまず、数学、確率、統計学の深い理解が必要です。下記は、それぞれの分野で用いられることの多いスキルです。具体的なスキル | |
---|---|
数学 | ベクトル解析 / 線型代数学 / 回帰分析 / 解析幾何学 / 密度推定 |
確率 | 離散分析 / 連続確率分布 / 正規分布 |
統計学 | 実験計画法 / 確立過程 / ノンパラメトリック手法 / 分散分析 |
下記は使用されることが多い機械学習ライブラリの一覧です。
機械学習ライブラリ | 特長 |
---|---|
Numpy | Numpyはベクトルや配列といった多次元数値配列の計算を高速に行えるライブラリです。NumPyの内部はC言語とFortranで実装されているため非常に高速に動作します。 |
TensorFlow | TensorFlowはGoogleが開発した機械学習や数値解析、ニューラルネットワーク (ディープラーニング)に対応しているライブラリです。また、TensorFlowは分散処理を行えるためビッグデータのような大量データも扱うことができます。 |
Pytorch | PyTorchは、コンピュータビジョンや自然言語処理で利用されているTorchをもとに作られた、Pythonのオープンソースの機械学習ライブラリで、GPUとCPUを使用した深層学習用に最適化されているライブラリです。 |
scikit-learn | scikit-learnは、分類、回帰、クラスタリングアルゴリズムを備えているオープンソースのPythonライブラリです。 scikit-learn では NumPyでデータやパラメータを取り扱います。 |
pandas | pandasはデータ解析ライブラリです。pandasのデータフレームには異なるデータを入れることができるため、さまざまな処理が可能です。pandasは欠損値を補完する機能もあるので、データの前処理の段階で使用されることも多いです。 |
matplotlib | matplotlibはデータの可視化に用いられるライブラリです。matplotlibを用いることで折れ線グラフや散布図、幹葉図などを作成することも可能です。 |
その他、BIツールも使用できると良いでしょう。正確かつ迅速にデータを分析し、意思決定を行うためにはBIツールは必須とも言えるツールです。具体的には、Tableau、Yellowfin、Power BI、Googleデータポータルなどのツールがあります。